Integrating Rules and Dictionaries from Shallow-Transfer Machine Translation into Phrase-Based Statistical Machine Translation

نویسندگان

  • Víctor M. Sánchez-Cartagena
  • Juan Antonio Pérez-Ortiz
  • Felipe Sánchez-Martínez
چکیده

We describe a hybridisation strategy whose objective is to integrate linguistic resources from shallow-transfer rule-based machine translation (RBMT) into phrase-based statistical machine translation (PBSMT). It basically consists of enriching the phrase table of a PBSMT system with bilingual phrase pairs matching transfer rules and dictionary entries from a shallow-transfer RBMT system. This new strategy takes advantage of how the linguistic resources are used by the RBMT system to segment the source-language sentences to be translated, and overcomes the limitations of existing hybrid approaches that treat the RBMT systems as a black box. Experimental results confirm that our approach delivers translations of higher quality than existing ones, and that it is specially useful when the parallel corpus available for training the SMT system is small or when translating outof-domain texts that are well covered by the RBMT dictionaries. A combination of this approach with a recently proposed unsupervised shallow-transfer rule inference algorithm results in a significantly greater translation quality than that of a baseline PBSMT; in this case, the only hand-crafted resource used are the dictionaries commonly used in RBMT. Moreover, the translation quality achieved by the hybrid system built with automatically inferred rules is similar to that obtained by those built with hand-crafted rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RuLearn: an Open-source Toolkit for the Automatic Inference of Shallow-transfer Rules for Machine Translation

This paper presents ruLearn, an open-source toolkit for the automatic inference of rules for shallow-transfer machine translation from scarce parallel corpora and morphological dictionaries. ruLearn will make rule-based machine translation a very appealing alternative for under-resourced language pairs because it avoids the need for human experts to handcraft transfer rules and requires, in con...

متن کامل

The UA-Prompsit hybrid machine translation system for the 2014 Workshop on Statistical Machine Translation

This paper describes the system jointly developed by members of the Departament de Llenguatges i Sistemes Informàtics at Universitat d’Alacant and the Prompsit Language Engineering company for the shared translation task of the 2014 Workshop on Statistical Machine Translation. We present a phrase-based statistical machine translation system whose phrase table is enriched with information obtain...

متن کامل

Enriching a statistical machine translation system trained on small parallel corpora with rule-based bilingual phrases

In this paper, we present a new hybridisation approach consisting of enriching the phrase table of a phrase-based statistical machine translation system with bilingual phrase pairs matching structural transfer rules and dictionary entries from a shallowtransfer rule-based machine translation system. We have tested this approach on different small parallel corpora scenarios, where pure statistic...

متن کامل

مدل ترجمه عبارت-مرزی با استفاده از برچسب‌های کم‌عمق نحوی

Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...

متن کامل

Exploiting Similarities among Languages for Machine Translation

Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data. It u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016